(本题13分)某市现行出租车收费标准如下:不考虑其他因素下,每次运行起步价为(包括燃油附加费在内)4里内5元(不含4里),满4里后的续程运行价为每里跳表计费1元。
(1)若某乘客坐出租车行驶了(
)里,他应付给司机的费用(元)记作
,求
(
)的表达式.
(2)令,构造函数
,
,若对任意
,都有
恒成立,试求
的取值范围.
(本小题满分15分)若展开式中前三项系数成等差数列.
(1)求n的值;
(2)求展开式中第4项的系数和二项式系数;
(3)求展开式中x的一次项.
(本小题满分14分)现有4名男生、2名女生站成一排照相.
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
.(本小题满分14分)用数学归纳法证明:1+3+5+…+(2n-1)=n2(n∈N+).
(本小题满分14分)
函数定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
(Ⅰ) 若函数,求
的最大值,写出
的解析式;
(Ⅱ) 若,函数
是
上的“第3类压缩函数”,求m的取值范围.
(本小题满分15分)
已知点,过点
作抛物线
的切线
,切点
在第二象限,如图.(Ⅰ)求切点
的纵坐标;
(Ⅱ)若离心率为的椭圆
恰好经过切点
,设切线
交椭圆的另一点为
,记切线
的斜率分别为
,若
,求椭圆方程.