如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角
,如图二,在二面角
中.
(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。
已知等差数列
满足:
,
的前n项和为
.
(1)求
及
;
(2)已知数列
的第n项为
,若
成等差数列,且
,设数列
的前
项和
.求数列
的前
项和
.
设有关于x的一元二次方程
.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
设
.
(1)若
时,
单调递增,求
的取值范围;
(2)讨论方程
的实数根的个数.
已知椭圆C的中心在原点,焦点F在
轴上,离心率
,点
在椭圆C上.
(1)求椭圆
的标准方程;
(2)若斜率为
的直线
交椭圆
与
、
两点,且
、
、
成等差数列,点M(1,1),求
的最大值.
如图,已知四棱锥
平面
,底面
为直角梯形,
,且
,
.
(1)点
在线段
上运动,且设
,问当
为何值时,
平面
,并证明你的结论;
(2)当
面
,且
,
求四棱锥
的体积.