游客
题文

在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ) X 表示3号歌手得到观众甲、乙、丙的票数之和, 求 X 的分布列和数学期望.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在六面体 A B C D A 1 B 1 C 1 D 1 中,四边形 A B C D 是边长为2的正方形,四边形 A 1 B 1 C 1 D 1 是边长为1的正方形, D D 1 平面 A 1 B 1 C 1 D 1 D D 1 平面 A B C D D D 1 2 .
image.png

(Ⅰ)求证: A 1 C 1 A C 共面, B 1 D 1 B D 共面;
(Ⅱ)求证: 平面 A 1 A C C 1 平面 B 1 B D D 1
(Ⅲ)求二面角 A B B 1 C 的大小(用反三角函数值表示).

已知0<a<的最小正周期, 向量 a = tan α + β / 4 - 1 ) , 向量 b = cos α 2 且向量 a × 向量 b = m 2 cos 2 α + sin 2 α + β cos α - sin α .

已知函数 f ( x ) = x 2 t - 2 t ( x 2 + x ) + x 2 + 2 t 2 + 1 g ( x ) = 1 2 f ( x )
(I)证明:当 t < 2 2 时, g ( x ) R 上是增函数;
(II)对于给定的闭区间 [ a , b ] ,试说明存在实数 k ,当 t > k 时, g ( x ) 在闭区间 [ a , b ] 上是减函数;
(III)证明: f ( x ) 3 2

已知数列 a n b n 与函数 f ( x ) g ( x ) x R 满足条件: a n = b n f ( b n ) = g ( b n + 1 ) .( n N * )

(I)若 f ( x ) t x + 1 , t 0 , t 2 , g ( x ) = 2 x f ( b ) g ( b ) l i m n a n 存在,求 x 的取值范围;
(II)若函数 y = f ( x ) R 上的增函数, g ( x ) = f - 1 ( x ) b = 1 f ( 1 ) < 1 ,证明对任意 n N * l i m n a n (用 t 表示).

已知正三角形 O A B 的三个顶点都在抛物线 y 2 = 2 x 上,其中 O 为坐标原点,设圆 C O A B 的内接圆(点 C 为圆心)
(I)求圆 C 的方程;
(II)设圆 M 的方程为 x - 4 - 7 cos θ 2 + y - 7 cos θ 2 = 1 ,过圆 M 上任意一点 P 分别作圆 C 的两条切线 P E , P F ,切点为 E , F ,求 C E , C F 的最大值和最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号