在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ)
表示3号歌手得到观众甲、乙、丙的票数之和, 求
的分布列和数学期望.
如图,在六面体
中,四边形
是边长为2的正方形,四边形
是边长为1的正方形,
,
,
.
(Ⅰ)求证:
共面,
共面;
(Ⅱ)求证:
;
(Ⅲ)求二面角
的大小(用反三角函数值表示).
已知0<a<的最小正周期,
求
.
已知函数
,
.
(I)证明:当
时,
在
上是增函数;
(II)对于给定的闭区间
,试说明存在实数
,当
时,
在闭区间
上是减函数;
(III)证明:
.
已知数列
,
与函数
,
,
满足条件:
,
.(
)
(I)若
,
,
存在,求
的取值范围;
(II)若函数
为
上的增函数,
,
,
,证明对任意
,
(用
表示).
已知正三角形
的三个顶点都在抛物线
上,其中
为坐标原点,设圆
是
的内接圆(点
为圆心)
(I)求圆
的方程;
(II)设圆
的方程为
,过圆
上任意一点
分别作圆
的两条切线
,切点为
,求
的最大值和最小值.