已知正三角形
的三个顶点都在抛物线
上,其中
为坐标原点,设圆
是
的内接圆(点
为圆心)
(I)求圆
的方程;
(II)设圆
的方程为
,过圆
上任意一点
分别作圆
的两条切线
,切点为
,求
的最大值和最小值.
(本小题满分14分)
设函数.
(1)求函数的单调递增区间;
(2)若关于的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
(本小题满分14分)
已知曲线上任意一点
到两个定点
和
的距离之和为4.
(1)求曲线的方程;
(2)设过的直线
与曲线
交于
、
两点,且
(
为坐标原点),求直线
的方程.
(本小题满分14分)
如图所示的长方体中,底面
是边长为
的正方形,
为
与
的交点,
,
是线段
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的大小.
(本小题满分12分)
已知射手甲射击一次,击中目标的概率是.
(1)求甲射击5次,恰有3次击中目标的概率;
(2)假设甲连续2次未击中目标,则停止其射击,求甲恰好射击5次后,被停止射击的概率.
(本小题满分12分)
在△中,角
所对的边分别为
,已知
,
,
.
(1)求的值;(2)求
的值.