(本小题满分12分)
已知射手甲射击一次,击中目标的概率是.
(1)求甲射击5次,恰有3次击中目标的概率;
(2)假设甲连续2次未击中目标,则停止其射击,求甲恰好射击5次后,被停止射击的概率.
设函数(其中
).
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)当时,求函数
在
上的最大值
.
已知抛物线的顶点为原点,其焦点
到直线
:
的距离为
.设
为直线
上的点,过点
作抛物线
的两条切线
,其中
为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)当点为直线
上的定点时,求直线
的方程;
(Ⅲ)当点在直线
上移动时,求
的最小值.
设数列的前
项和为
,满足
,
,且
.
(1)求、
、
的值;
(2)求数列的通项公式.
随机观测生产某种零件的某工厂名工人的日加工零件数(单位:件),获得数据如下:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,根据上述数据得到样本的频率分布表如下:
分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)确定样本频率分布表中、
、
和
的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取人,至少有
人的日加工零件数落在区间
的概率.
如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.