游客
题文

给定常数 c > 0 ,定义函数 f x = 2 x + c + 4 - x + c ,数列 a 1 , a 2 , a 3 , 满足 a n + 1 = f a n , n N * .
(1)若 a 1 = - c - 2 ,求 a 2 a 3
(2)求证:对任意 n N * , a n + 1 - a n c
(3)是否存在 a 1 ,使得 a 1 , a 2 , , a n , 成等差数列?若存在,求出所有这样的 a 1 ,若不存在,说明理由.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

(本小题满分12分)已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若关于的方程在区间上有两个不同的实数根,求实数的取值范围.

(本小题满分12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线.

(Ⅰ)写出第一次服药后之间的函数关系式
(Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到0.1)(参考数据:).

(本小题满分12分)已知
(Ⅰ)求的值;
(Ⅱ)求的值.

(本小题满分12分)已知向量,设的夹角为
(Ⅰ)求
(Ⅱ)若,求的值.

(本小题满分12分)已知幂函数的图象经过点
(Ⅰ)求函数的解析式;
(Ⅱ)判断函数在区间上的单调性,并用单调性的定义证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号