(本小题满分12分)
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
(本小题满分12分)设点P的坐标为,直线l的方程为
.请写出点P到直线l的距离,并加以证明.
如图,FD垂直于矩形ABCD所在平面,CE//DF,.
(Ⅰ)求证:BE//平面ADF;
(Ⅱ)若矩形ABCD的一个边AB =,EF =
,则另一边BC的长为何值时,二面角B-EF-D的大小为45°?
(本小题满分12分)
三角形的三个内角A、B、C所对边的长分别为、
、
,设向量
,若
//
.
(I)求角B的大小;
(II)求的取值范围.
..(本题14分)已知为常数,且
,函数
,
(
,为自然对数的底数)
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,是否同时存在实数
和
(
<
),使得对每一个
,直线
与曲线
(
)都有公共点?若存在,求出最小的实数
和最大的实数
;若不存在,说明理由.