如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)①写出图1中的一对全等三角形;②写出图1中线段DE、AD、BE所具有的等量关系;(不必说明理由)
(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由)。
如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.
如图,是某工程队在“村村通”工程中修筑的公路长度y(米)与时间x(天)(其中0≤x≤8)之间的关系图象.根据图象提供的信息,求该公路的长.
某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)本次随机抽取的学生人数为 人;
(2)求出x值,并将不完整的条形统计图补充完整;
(3)若该校共有学生2500人,试估计每周课外阅读量满足2≤t<4的人数.
如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.
如图,在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.