游客
题文

已知二次函数 (a、m为常数,且a¹0)。
(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;
(2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。
①当△ABC的面积等于1时,求a的值:
②当△ABC的面积与△ABD的面积相等时,求m的值。

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

结果如此巧合 !

下面是小颖对一道题目的解答.

题目:如图, Rt Δ ABC 的内切圆与斜边 AB 相切于点 D AD = 3 BD = 4 ,求 ΔABC 的面积.

解:设 ΔABC 的内切圆分别与 AC BC 相切于点 E F CE 的长为 x

根据切线长定理,得 AE = AD = 3 BF = BD = 4 CF = CE = x

根据勾股定理,得 ( x + 3 ) 2 + ( x + 4 ) 2 = ( 3 + 4 ) 2

整理,得 x 2 + 7 x = 12

所以 S ΔABC = 1 2 AC · BC

= 1 2 ( x + 3 ) ( x + 4 )

= 1 2 ( x 2 + 7 x + 12 )

= 1 2 × ( 12 + 12 )

= 12

小颖发现12恰好就是 3 × 4 ,即 ΔABC 的面积等于 AD BD 的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知: ΔABC 的内切圆与 AB 相切于点 D AD = m BD = n

可以一般化吗?

(1)若 C = 90 ° ,求证: ΔABC 的面积等于 mn

倒过来思考呢?

(2)若 AC · BC = 2 mn ,求证 C = 90 °

改变一下条件

(3)若 C = 60 ° ,用 m n 表示 ΔABC 的面积.

如图,在正方形 ABCD 中, E AB 上一点,连接 DE .过点 A AF DE ,垂足为 F O 经过点 C D F ,与 AD 相交于点 G

(1)求证: ΔAFG ΔDFC

(2)若正方形 ABCD 的边长为4, AE = 1 ,求 O 的半径.

小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第 16 min 回到家中.设小明出发第 tmin 时的速度为 vm / min ,离家的距离为 sm v t 之间的函数关系如图所示(图中的空心圈表示不包含这一点).

(1)小明出发第 2 min 时离家的距离为   m

(2)当 2 < t 5 时,求 s t 之间的函数表达式;

(3)画出 s t 之间的函数图象.

已知二次函数 y = 2 ( x 1 ) ( x m 3 ) ( m 为常数).

(1)求证:不论 m 为何值,该函数的图象与 x 轴总有公共点;

(2)当 m 取什么值时,该函数的图象与 y 轴的交点在 x 轴的上方?

如图,为了测量建筑物 AB 的高度,在 D 处竖立标杆 CD ,标杆的高是 2 m ,在 DB 上选取观测点 E F ,从 E 测得标杆和建筑物的顶部 C A 的仰角分别为 58 ° 45 ° .从 F 测得 C A 的仰角分别为 22 ° 70 ° .求建筑物 AB 的高度(精确到 0 . 1 m ) .(参考数据: tan 22 ° 0 . 40 tan 58 ° 1 . 60 tan 70 ° 2 . 75 )

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号