抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.
(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(l)如果∠BAC=300,∠DAE=l050,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(l)中y与x之间的函数关系式还成立?试说明理由.
已知:如图,在平面直角坐标系中,正方形 OABC的顶点B的坐标为(2,2),A、C两点分别在x轴、y轴上.P是BC边上一点(不与B点重合),连AP并延长与x轴交于点E,当点P在边BC上移动时,△AOE的面积随之变化.
①设PB="a" (0<a≤2)。求出△AOE的面积S与a的函数关系式.
②根据①的函数关系式,确定点P在什么位置时,S△AOE=2,并求出此时直线AE的解析式.
③在所给的平面直角坐标系中画出①中函数的图像和函数S=-a+2的简图.
④设函数S=-a+2的图像交a轴于点G,交S轴于点D,点M是①的函数图像上的一动点,过M点向S轴作垂线交函数S=-a+2的图像于点H,过M点向a轴作垂线交函数S=-a+2的图象于点Q,请问DQ·HG的值是否会变化,若不变,请求出此值;若变化,请说明理由.
在四边形ABCD中,E是AD上一点,且BE//CD,AB//CE,△ABE的面积记为S1,△BEC的面积记为S2,△DEC的面积记为S3.
①试判断△ABE与△ECD是否相似,并说明理由.
②当S1=6,S3=3时,求S2的值.
③猜想S1,S2,S3之间的等量关系,并说明你的理由.
如图,在和
中,
,
,
.
(1)判断这两个三角形是否相似?并说明为什么?
(2)能否分别过在这两个三角形中各作一条辅助线,使
分割成的两个三角形与
分割成的两个三角形分别对应相似?证明你的结论.
一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,用列表或画树状的方法求两次摸出的球都是白球的概率.