已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出两种鱼各只,给每只鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机的捕出
只鱼,记录下其中有记号的鱼的数目,立即放回池塘中。这样的记录做了
次,并将记录获取的数据做成以下的茎叶图。
(Ⅰ)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(Ⅱ)为了估计池塘中鱼的总重量,现从中按照(Ⅰ)的比例对条鱼进行称重,据称重鱼的重量介于
(单位:千克)之间,将测量结果按如下方式分成九组:第一组
、第二组
;……,第九组
。右图是按上述分组方法得到的频率分布直方图的一部分。
①估计池塘中鱼的重量在千克以上(含
千克)的条数;
②若第二组、第三组、第四组鱼的条数依次成公差为的等差数列,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的重量的众数、中位数及估计池塘中鱼的总重量;
(Ⅲ)假设随机地从池塘逐只有放回的捕出只鱼中出现鲤鱼的次数为
,求
的数学期望。
已知函数.
(Ⅰ) 当时,求函数f(x)的值域;
(Ⅱ)设a,b,c分别为△ABC三个内角A,B,C的对边,f(C)=3,c=1,ab=,求a,b的值。
(本小题满分14分)
设函数,其中
.
( I )若函数图象恒过定点P,且点P在
的图象上,求m的值;
(Ⅱ)当时,设
,讨论
的单调性;
(Ⅲ)在(I)的条件下,设,曲线
上是否存在两点P、Q,
使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
(本小题满分12分)
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M必在点N的右侧),且已知椭圆D:
的焦距等于
,且过点
( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M斜率不为零的直线与椭圆D交于A、B两点,求证:直线NA与直线NB的倾角互补.
(本小题满分12分)
已知数列的各项排成如图所示的三角形数阵,数阵中每一行的第一个数
构成等差数列
,
是
的前n项和,且
( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知,求
的值;
(Ⅱ)设,求
.
(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD
平面EFDC,设AD中点为P.
( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。