已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出两种鱼各只,给每只鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机的捕出
只鱼,记录下其中有记号的鱼的数目,立即放回池塘中。这样的记录做了
次,并将记录获取的数据做成以下的茎叶图。
(Ⅰ)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(Ⅱ)为了估计池塘中鱼的总重量,现从中按照(Ⅰ)的比例对条鱼进行称重,据称重鱼的重量介于
(单位:千克)之间,将测量结果按如下方式分成九组:第一组
、第二组
;……,第九组
。右图是按上述分组方法得到的频率分布直方图的一部分。
①估计池塘中鱼的重量在千克以上(含
千克)的条数;
②若第二组、第三组、第四组鱼的条数依次成公差为的等差数列,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的重量的众数、中位数及估计池塘中鱼的总重量;
(Ⅲ)假设随机地从池塘逐只有放回的捕出只鱼中出现鲤鱼的次数为
,求
的数学期望。
△ABC的角A、B、C的对边分别为a、b、c,=(2b-c,a),=(cosA,-cosC),且⊥.(Ⅰ)求角A的大小;(Ⅱ)当y=2sin2B+sin(2B+)取最大值时,求角的大小.
.已知A、B、C的坐标分别为A(4,0),B(0,4),C(3cosα,3sinα).(Ⅰ)若α∈(-π,0),且||=||,求角α的大小;(Ⅱ)若⊥,求的值.
在△ABC中,A、B、C所对边的长分别为a、b、c,已知向量=(1,2sinA),=(sinA,1+cosA),满足∥,b+c=a.(Ⅰ)求A的大小;(Ⅱ)求sin(B+)的值.
已知向量=(sinA,cosA),=(,-1),·=1,且为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
已知=(sinθ,),=(1,),其中θ∈(π,),则一定有()
A.∥ | B.⊥ | C.与夹角为45° | D.||=|| |