因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施。若实施方案一,预计第一年可以使出口额恢复到危机前的倍、
倍、
倍的概率分别为
、
、
;第二年可以使出口额为第一年的
倍、
倍的概率分别为
、
。若实施方案二,预计第一年可以使出口额恢复到危机前的
倍、
倍、
倍的概率分别为
、
、
;第二年可以使出口额为第一年的
倍、
倍的概率分别为
、
。实施每种方案第一年与第二年相互独立。令
表示方案
实施两年后出口额达到危机前的倍数。
(1)写出的分布列;
(2)实施哪种方案,两年后出口额超过危机前出口额的概率更大?
(3)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为万元、
万元、
万元,问实施哪种方案的平均利润更大?
已知函数.
(1)若在
处取得极值,求实数
的值;
(2)求函数的单调区间;
(3)若在
上没有零点,求实数
的取值范围.
如图,已知四棱锥,
,
,
平面
,
∥
,
为
的中点.
(1)求证:∥平面
;
(2)求证:平面平面
;
(3)求四棱锥的体积.
某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.
(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中
间矩形的高;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在
之间的概率.
在△中,角
的对边分别为
,且
,
.
(1)求角的大小;
(2)若,
,求
边的长和△
的面积.
对于数列,把
作为新数列
的第一项,把
或
(
)作为新数列
的第
项,数列
称为数列
的一个生成数列.例如,数列
的一个生成数列是
.已知数列
为数列
的生成数列,
为数列
的前
项和.
(1)写出的所有可能值;
(2)若生成数列满足
,求数列
的通项公式;
(3)证明:对于给定的,
的所有可能值组成的集合为
.