某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).
如图,在平面直角坐标系中,四边形OABC是矩形,OA = 6,AB = 4,直线y =" -" x +3与坐标轴交于D、E。设M是AB的中点,P是线段DE上的动点.
(1)求M、D两点的坐标;
(2)当P在什么位置时,PA = PB?求出此时P点的坐标;
(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<
<180°),得到△A′B′C.
(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
(2)如图(2),设AC中点为E,A′B′中点为P,AC=,连接EP, 当
=°时,EP长度最大,最大值为.
如图所示,在RtABC中,∠C=90°,∠BAC=60°,AB=8.半径为
的⊙M与射线BA相切,切点为N,且AN=3.将Rt
ABC绕A点顺时针旋转120°后得到Rt
ADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的RtADE,求出Rt
ADE 的直角边DE被⊙M截得的弦PQ的长度;
(2)判断RtADE的斜边AD所在的直线与⊙M的位置关系(直接写出答案)
如图,点在
的直径
的延长线上,点
在
上,且AC=CD,∠ACD=120°.
(1)求证:是
的切线;
(2)若的半径为2,求图中阴影部分的面积.
元旦送贺卡,一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这小组有多少人?