如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.
(1)求经过A、B、C三点的抛物线所对应的函数解析式;
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;
(3)试说明直线MC与⊙P的位置关系,并证明你的结论.
已知,a=﹣
+1
(1)求a、c的值;
(2)若一元二次方程ax2+bx+c=0有一个根是1,求b的值和方程的另一个根.
已知△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC绕圆点O旋转180°得到△A1B1C1,请你在图中画出△A1B1C1;
(2)写出点A1的坐标;
(3)求△A1B1C1的面积.
已知,如图点A、B、C在⊙O上,AO∥BC,∠OBC=40°,求∠ACB的度数.
解方程:8x﹣2=x(4﹣x)
如图,在平面直角坐标系中,已知抛物线交
轴于A(2,0),B(6,0)两点,交
轴于点C(0,
).
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交
轴于点E、F两点,求劣弧EF所对圆心角的度数;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.