游客
题文

如图,已知二次函数的图象过点A(0,﹣3),B(),对称轴为直线,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.

(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

AB是⊙O的一条弦,它的中点为M,过点M作一条非直径的弦CD,过点C和D作⊙O的两条切线,分别与直线AB相交于P、Q两点.求证:PA=QB

如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E.

(1)若∠ADC+∠ABC=180°,求证:AD+AB =2AE;
(2)若AD+AB =2AE,求证:CD=CB.

由示意图可见,抛物线y=x2 +px+q①若有两点A(a,yl)、B(b,y2)(其中a<b)在x轴下方,则抛物线必与x轴有两个交点C(x1,O)、D(x2,O)(其中xl<x2),且满足xl<a<b<x2.当A(1,- 2.005),且xl、x2均为整数时,求二次函数的表达式,

某饮料厂现有A、B两种果汁原料至多分别有19千克和17.2千克,准备配制甲、乙两种新型饮料共50瓶。表中是试验的有关数据:

饮料
每瓶新型
饮料含果汁量
甲种
新型饮料
乙种
新型饮料
A种果汁(单位:千克)
0.5
0.2
B种果汁(单位:千克)
0.3
0.4

⑴ 假设甲种饮料需要配制x瓶,请写出满足条件的不等式组
⑵ 通过计算说明有哪几种配制方案
⑶ 设甲种饮料每瓶成本为4元,乙种饮料每瓶成本为3元,这两种饮料的成本总额为y元,通过计算说明,当甲种饮料配制多少瓶时,甲、乙两种饮料的总成本最少?

2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难,八方支援”,某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要,工作效率提高到原来的1.5倍,结果提前4天完成了任务,求原来每天加工多少顶帐篷?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号