如图,直线x=-4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=-4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.
(1)求点A的坐标;
(2)若△OBC是等腰三角形,求此抛物线的函数关系式.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B,C的坐标分别为(0,1),(1,-1),(5,1).
(1)直接写出点B关于原点的对称点D的坐标;
(2)将△ABC绕点C顺时针旋转90º得到△A1B1C.请在网格中画出△A1B1C,并直接写出点A1和B1的坐标.
如图,正比例函数y=2x与反比例函数的图象的一个交点为A(2,m).
求m和k的值.
如图,点D是△ABC的边AC上的一点,AB2=AC·AD.求证:△ADB∽△ABC.
如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=, E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连结CE.
(1)求AC和OA的长;
(2)设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此 时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
如图,在Rt△ABC中,∠C = 90°,BC=9,CA=12,∠ABC的平分线BD交AC于点D, DE⊥DB交AB于点E. 点O在AB上,⊙O是△BDE的外接圆,交BC于点F,连结EF.求的值.