已知函数与
的图像都过点
,且它们在点
处有公共切线.
(1)求函数和
的表达式及在点
处的公切线方程;
(2)设,其中
,求
的单调区间.
设i、j分别是平面直角坐标系Ox,Oy正方向上的单位向量,且=-2i+mj,
=ni+j,
=5i-j,若点A、B、C在同一条直线上,且m=2n,求实数m、n的值.
设a、b是不共线的两个非零向量,
(1)若=2a-b,
=3a+b,
=a-3b,求证:A、B、C三点共线;
(2)若8a+kb与ka+2b共线,求实数k的值.
已知直线与椭圆
相交于A、B两点.
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量
互相垂直(其中
为坐标原点),当椭圆的离心率
时,求椭圆长轴长的最大值.
已知向量,
,函数
(1)求的单调递增区间;
(2)若不等式都成立,求实数m的最大值.
设函数曲线y=f(x)通过点(0,2a+3),且在点
(-1,f(-1))处的切线垂直于y轴.
(1)用a分别表示b和c;
(2)当bc取得最小值时,求函数g(x)= 的单调区间.