受日月引力的作用,海水会发生涨落,这种现象叫潮汐. 在通常情况下,船在海水涨潮时驶进航道,靠近码头,卸货后返回海洋.某港口水的深度是时间
,单位:
的函数,记作:
,下表是该港口在某季每天水深的数据:
经过长期观察的曲线可以近似地看做函数
的图象.
(Ⅰ)根据以上数据,求出函数的近似表达式;
(Ⅱ)一般情况下,船舶航行时船底离海底的距离为以上时认为是安全的(船舶停靠时,船底只需不碰到海底即可),某船吃水深度(船底离水面的距离)为
,如果该船想在同一天内安全进出港,问它至多能在港内停留多长时间(忽略进出港所需时间)?
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5。同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和。
(Ⅰ)求事件“m不小于6”的概率;
(Ⅱ)“m为奇数”的概率和“m为偶数”的概率是不是相等?证明你作出的结论。
如图,是底部
不可到达的一个塔型建筑物,
为塔的最高点.现需在塔对岸测出塔高
, 甲、乙两同学各提出了一种测量方法,甲同学的方法是:选与塔底
在同一水平面内的一条基线
,使
不在同一条直线上,测出
及
的大小(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),另外需在点
测得塔顶
的仰角(用
表示测量的数据),就可以求得塔高
.乙同学的方法是:选一条水平基线
,使
三点在同一条直线上.在
处分别测得塔顶
的仰角(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),就可以求得塔高
.请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时
按顺时针方向标注,
按从左到右的方向标注;③求塔高
.
设不等式的解集是
,
.
(I)试比较与
的大小;
(II)设表示数集
的最大数.
,求证:
.
在平面直角坐标系中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(I)求曲线,
的方程;
(II)若点,
在曲线
上,求
的值.