在极坐标系内,已知曲线的方程为
,以极点为原点,极轴方向为
正半轴方向,利用相同单位长度建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1) 求曲线的直角坐标方程以及曲线
的普通方程;
(2) 设点为曲线
上的动点,过点
作曲线
的两条切线,求这两条切线所成角余弦值的取值范围.
已知函数在区间[2,3]上有最大值4和最小值1,设
=
.
(1)求a、b的值;
(2)若不等式,在
上有解,求实数k的取值范围.
某蔬菜基地种植西红柿,由历年市场行情得出,从2 月1日起的300天内,西红柿市场售价P与上市时间t的关系可用图4的一条折线表示;西红柿的种植成本Q与上市时间t的关系可用图5的抛物线段表示.
(1)写出图4表示的市场售价P与时间t的函数关系式,写出图5表示的种植成本Q与时间t的函数关系式
.
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
已知函数是
上的奇函数,当
时,
(1)当时,求函数
的解析式;
(2)证明函数在区间
上是单调增函数.
求下列各式的值.
(1);(2)设
,求
的值;
(3).
如图所示,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点.
(Ⅰ)若,求证:无论点P在DD1上如何移动,总有BP⊥MN;
(Ⅱ)棱DD1上是否存在这样的点P,使得平面APC1⊥平面A1ACC1?证明你的结论.