设函数(Ⅰ)若函数
在
上单调递减,在区间
单调递增,求
的值;
(Ⅱ)若函数在
上有两个不同的极值点,求
的取值范围;
(Ⅲ)若方程有且只有三个不同的实根,求
的取值范围。
【选修4—2:矩阵与变换】(本小题满分10分)
已知曲线,在矩阵M
对应的变换作用下得到曲线
,
在矩阵N
对应的变换作用下得到曲线
,求曲线
的方程.
【选修4—1几何证明选讲】(本小题满分10分)如图,在△ABC中,CM是∠ACB的平分线,△AMC的外接圆O交BC于点N. 若AB=2AC,
求证:BN=2AM.
(本小题满分16分)已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列
前n项和为
,且满足
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求正整数m的值;
(Ⅲ)是否存在正整数m,使得恰好为数列
中的一项?若存在,求出所有满足条件的m
值,若不存在,说明理由.
(本小题满分16分)设二次函数的导函数为
(Ⅰ)若,且在平面直角坐标系xOy中,直线y=
恰与抛物线y=f(x)相切,求b的值;
(Ⅱ)若恒成立,
(ⅰ)求证:c≥a>0;
(ⅱ)求的最大值.
(本小题满分16分)如图,在平面直角坐标系 xOy 中,A,B 是圆 O:与 x 轴的两个交点(点 B 在点 A右侧),点 Q(-2,0), x 轴上方的动点 P 使直线 PA,PQ,PB 的斜率存在且依次成等差数列.
(Ⅰ)求证:动点 P 的横坐标为定值;
(Ⅱ)设直线 PA,PB 与圆 O 的另一个交点分别为 S,T,求证:点 Q,S,T 三点共线.