如图,四边形是正方形,
,
,
,
(Ⅰ)求证:平面平面
;
(Ⅱ)求三棱锥的高
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点O.
椭圆的离心率是
,它被直线
截得的弦长是
,求椭圆的方程.
已知p:
,q:
.
(1)若p是q充分不必要条件,求实数的取值范围;
(2)若“非p”是“非q”的充分不必要条件,求实数的取值范围.
,其中
、
是常数,且满足
,是否存在这样的
、
,使
是与
无关的定值.若存在,求出
的值;若不存在,说明理由.