在直角三角形中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm.
(1)△ABC的面积;
(2)求CD的长?
(3)若△ABC的边AC上的中线是BE,求△ABE的面积.
如图所示的直角坐标系中,四边形的四个顶点坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7),求这个四边形的面积.
如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=150°,求∠EDF的度数.
已知,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.
如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1,
y1)和N(x2,y2)两点(其中x1<0,x2<0).
⑴求b的值.
⑵求x1•x2的值
⑶分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.
⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.