如图1,在平面直角坐标系中,正方形OABC的顶点A(﹣6,0),过点E(﹣2,0)作EF∥AB,交BO于F;
(1)求EF的长;
(2)过点F作直线l分别与直线AO、直线BC交于点H、G;
①根据上述语句,在图1上画出图形,并证明;
②过点G作直线GD∥AB,交x轴于点D,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点),使它与GD有公共点P.如图2所示,当直线l绕点F旋转时,点P也随之运动,证明:,并通过操作、观察,直接写出BG长度的取值范围(不必说理);
(3)在(2)中,若点M(2,),探索2PO+PM的最小值.
为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?
如图,△A1B1C1是△ABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).
(1)请画出△ABC,并写出点A、B、C的坐标;
(2)求出△AOA1的面积.
如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.
化简:.
(本题14分)如图,在平面直角坐标系内,正方形AOBC顶点C的坐标为(2,2),过点B的直线∥OC,P是直线上一个动点,抛物线
过O、C、P三点.
(1)填空:直线的函数解析式为;的关系式是.
(2)当△PBC是等腰Rt△时,求抛物线的解析式 ;
(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标的取值范围.