如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.
(1)填空:D点坐标是( , ),E点坐标是( , );
(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;
(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.
已知点P(x+1,2x﹣1)关于x轴对称的点在第一象限,试化简:|x+2|+|1﹣x|.
如图,在边长为4的正方形中,点
在
上从
向
运动,连接
交
于点.
⑴试证明:无论点运动到
上何处时,都有△
≌△
;
⑵当点在
上运动到什么位置时,△
的面积是正方形
面积的
;
⑶若点从点
运动到点
,再继续在
上运动到点
,在整个运动过程中,当点
运动到什么位置时,△
恰为等腰三角形.
观察下列各式及验证过程:
……
⑴按照上述三个等式及验证过程中的基本思想,猜想的变形结果并进行验证.
⑵针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,无须证明.
已知,如图□ABCD中,AB⊥AC,AB=1,BC=,对角线AC、BD交于0点,将直线AC绕点0顺时针旋转,分别交BC、AD于点E、F
⑴求证:AF=EC;
⑵在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点0顺时针旋转的度数。
如图,把长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在点C′的位置上.
⑴若∠1=50°,求∠2、∠3的度数;
⑵若AB=7,DE=8,求CF的长度.