已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)当时,在曲线
上是否存在两点
,使得曲线在
两点处的切线均与直线
交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;
(Ⅲ)若在区间
存在最大值
,试构造一个函数
,使得
同时满足以下三个条件:①定义域
,且
;②当
时,
;③在
中使
取得最大值
时的
值,从小到大组成等差数列.(只要写出函数
即可)
关于的不等式
.
(Ⅰ)当时,解此不等式;
(Ⅱ)设函数,当
为何值时,
恒成立?
在平面直角坐标系xoy中,曲线C1的参数方程为(
,
为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,
)对应的参数j=
,曲线C2过点D(1,
).
(I)求曲线C1,C2的直角坐标方程;
(II)若点A(r1,q),B(r2,q+)在曲线C1上,求
的值.
如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.,OE交AD于点F.
(I)求证:DE是⊙O的切线;
(II)若=
,求
的值.
函数的定义域为
(a为实数),
(1)当时,求函数
的值域。
(2)若函数在定义域上是减函数,求a的取值范围
(3)求函数在
上的最大值及最小值。
某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算