某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算
为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打羽毛球 |
不喜爱打羽毛球 |
合计 |
|
男生 |
5 |
||
女生 |
10 |
||
50 |
已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;
(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,
还喜欢打乒乓球,
还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生
和
不全被选中的概率.下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中
.)
设函数,其中
为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点
(其中
)处的切线为
,
与
轴、
轴所围成的三角形面积为
,求
的最大值.
已知集合
A=, B=
.
(1)若,求A∩B,
;
(2)若A,求实数m的取值范围。
已知
(1)求函数在
上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有
成立
已知函数在
处取得极值2.
⑴ 求函数的解析式;
⑵ 若函数在区间
上是单调函数,求实数m的取值范围;