已知函数
(I)求函数的最小值;
(II)对于函数和
定义域内的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
是函数
和
的“分界线”.
设函数,
,试问函数
和
是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
已知函数.
(1)若从集合中任取一个元素
,从集合
中任取一个元素
,求方程
有两个不相等实根的概率;
(2)若是从区间
中任取的一个数,
是从区间
中任取的一个数,求方程
没有实根的概率.
已知函数,其中
.
(1)若在
处取得极值,求
的值;
(2)求的单调区间;
(3)若的最小值为1,求
的取值范围.
已知是椭圆
的左、右焦点,过点
作
倾斜角为的动直线
交椭圆于
两点.当
时,
,且
.
(1)求椭圆的离心率及椭圆的标准方程;
(2)求△面积的最大值,并求出使面积达到最大值时直线
的方程.
已知函数.
(1)解关于的不等式
;
(2)若对,
恒成立,求
的取值范围.
已知直线的参数方程为
(t为参数),曲线C的极坐标方程是
以极点为原点,极轴为x轴正方向建立直角坐标系,点
,直线
与曲
线C交于A,B两点.
(1)写出直线的普通方程与曲线C的直角坐标方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值.