游客
题文

在直角坐标系中,曲线的参数方程为
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线相交于两点,求以线段为直径的圆的直角坐标方程.

科目 数学   题型 解答题   难度 容易
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知函数的最大值为正实数,集合,集合
(1)求
(2)定义的差集:
均为整数,且取自的概率,取自的概率,写出的二组值,使
(3)若函数中,是(2)中较大的一组,试写出在区间[,n]上的最大值函数的表达式。

已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成以
Bn为顶点的等腰三角形。

⑴求{yn}的通项公式,且证明{yn}是等差数列;
⑵试判断xn+2-xn是否为同一常数(不必证明),并求出数列{xn}的通项公式;
⑶在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此时a值;
若不存在, 请说明理由。

已知之间满足
(1)方程表示的曲线经过一点,求b的值
(2)动点(x,y)在曲线(b>0)上变化,求x2+2y的最大值;
(3)由能否确定一个函数关系式,如能,求解析式;如不能,再加什么条件就可使之间建立函数关系,并求出解析式。

已知等比数列{an}的前n项和为Sn.
(Ⅰ)若SmSm+2Sm+1成等差数列,证明amam+2am+1成等差数列;
(Ⅱ)写出(Ⅰ)的逆命题,判断它的真伪,并给出证明.

设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素具有下面的性质:若的定义域为D,则对于任意
[m,n]D,都存在[m,n],使得等式成立”,
试用这一性质证明:方程只有一个实数根;
(III)设是方程的实数根,求证:对于定义域中任意的.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号