游客
题文

甲,乙两人进行乒兵球比赛,在每一局比赛中,甲获胜的概率为
(1)如果甲,乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求的取值范围;
(2)若,当采用3局2胜制的比赛规则时,求甲获胜的概率;
(3)如果甲,乙两人比赛6局,那么甲恰好胜3局的概率可能是吗?

科目 数学   题型 解答题   难度 容易
知识点: 正交试验设计方法
登录免费查看答案和解析
相关试题

某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为(),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为

ξ
0
1
2
3





(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望ξ。

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的余弦值;

ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,求边BC上的高.

(10分)已知是公差不为零的等差数列,成等比数列.
(Ⅰ)求数列的通项;(Ⅱ)求数列的前n项和

(本小题满分12分)
已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求的取值范围;
(3)在(2)的条件下,设函数,若在上至少存在一点,使得成立,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号