(本小题满分12分)某市为了解全市居民日常用水量的分布情况,现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如下图表:
分组 |
频数 |
频率 |
[0,1) |
25 |
y |
[1,2) |
|
0.19 |
[2,3) |
50 |
x |
[3,4) |
|
0.23 |
[4,5) |
|
0.18 |
[5,6] |
5 |
|
(Ⅰ)分别求出x,n,y的值;
(Ⅱ)若从样本中月均用水量在[5,6]内的5位居民a,b,c,d,e中任选2人作进一步的调查研究,求居民a被选中的概率.
某商场“五一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个大小相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(1)求该顾客摸三次球被停止的概率;
(2)设为该顾客摸球停止时所得的奖金数,求
的分布列及均值.
在中,角
、
、
的对边分别为
、
、
.已知
,且
(1) 求角的大小;
(2)求的面积
等比数列{an}的各项均为正数,且。
(1)求数列的通项公式;
(2)设,求数列
的前
项和.
如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列
为“三角形”数列;又对于“三角形”数列
,如果函数y=f(x)使得由
=f(
)(
)确定的数列
仍成为一个“三角形”数列,就称y="f(x)" 是数列
的“保三角形”函数。
(Ⅰ)、已知数列是首项为2012,公比为
的等比数列,求证:
是“三角形”数列;
(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)=
(m>0且m≠1)是
的“保三角形”函数. 求m的取值范围.
向量=(4cos
, sin
),
=(sin
, 4cos
),
=(cos
, -4sin
)(
且
、
均不等于
).
(Ⅰ)、求的最大值;
(Ⅱ)、当∥
且
⊥(
-2
)时,求tan
+ tan
的值.