某商场“五一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个大小相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(1)求该顾客摸三次球被停止的概率;
(2)设为该顾客摸球停止时所得的奖金数,求
的分布列及均值.
底面边长为2的正三棱锥
,其表面展开图是三角形
,如图,求△
的各边长及此三棱锥的体积
.
设函数
.
(1)当
(
为自然对数的底数)时,求
的最小值;
(2)讨论函数
零点的个数;
(3)若对任意
恒成立,求
的取值范围.
已知椭圆
经过点
,离心率为
,左右焦点分别为
.
(1)求椭圆的方程;
(2)若直线
与椭圆交于
两点,与以
为直径的圆交于
两点,且满足
,求直线
的方程.
某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) |
0 |
1000 |
2000 |
3000 |
4000 |
车辆数(辆) |
500 |
130 |
100 |
150 |
120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10℅,在赔付金额为4000元的样本车辆中,车主是新司机的占20℅,估计在已投保车辆中,新司机获赔金额为4000元的概率.
在直角坐标系
中,已知点
,点
在
三边围成的区域(含边界)上,且
(1)若
,求
;
(2)用
表示
,并求
的最大值.