某商场“五一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个大小相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(1)求该顾客摸三次球被停止的概率;
(2)设
为该顾客摸球停止时所得的奖金数,求
的分布列及均值.
(本小题满分10分)等差数列
中,
,公差
且
成等比数列,前
项的和为
.
(1)求
及
;
(2)设
,
,求
.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的取值范围.
证明:(1)对任一正整
,都存在整数
,使得
成等差数列。
(2)存在无穷多个互不相似的三角形
,其边长
为正整数且
成等差数列。
已知
,
且
.
(Ⅰ)当
时,求
在
处的切线方程;
(Ⅱ)当
时,设
所对应的自变量取值区间的长度为
(闭区间
的长度定义为
),试求
的最大值;
(Ⅲ)是否存在这样的
,使得当
时,
?若存在,求出
的取值范围;若不存在,请说明理由.
已知椭圆
的离心率为
,椭圆的左、右两个顶点分别为
,
,直线
与椭圆相交于
两点,经过三点
的圆与经过三点
的圆分别记为圆C1与圆C2.
(1)求椭圆的方程;
(2)求证:无论
如何变化,圆C1与圆C2的圆心距是定值;
(3)当
变化时,求圆C1与圆C2的面积的和
的最小值.