如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H
(Ⅰ)设EF中点为,求证:O、
、B、P四点共圆
(Ⅱ)求证:OG =OH.
已知外接圆劣弧
上的点(不与点
、
重合),延长
交
的延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.
已知函数,
,其中
且
.
为自然对数的底数.
(Ⅰ)当时,求函数
的单调区间和极小值;
(Ⅱ)当时,若函数
存在
三个零点,且
,试证明:
;
已知椭圆:
经过点
,且焦点与双曲线
的焦点相同.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点而不过点
的动直线
交椭圆
于
两点,证明:
.
如图,为矩形,
为梯形,平面
平面
,
,
.
(Ⅰ)若为
中点,求证:
∥平面
;
(Ⅱ)求平面与
所成锐二面角的大小.
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.
(Ⅰ)求的概率;
(Ⅱ)记,求随机变量
的概率分布列和数学期望.