某农场学校积极开展阳光体育活动,组织了九年级学生定点投篮,规定每人投篮3次.现对九年级(1)班每名学生投中的次数进行统计,绘制成如下的两幅统计图,根据图中提供的信息,回答下列问题.
(1)求出九年级(1)班学生人数;
(2)补全两个统计图;
(3)求出扇形统计图中3次的圆心角的度数;
(4)若九年级有学生200人,估计投中次数在2次以上(包括2次)的人数.
如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.
如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)
先化简:,然后从
的范围内选取一个合适的整数作为x的值代入求值.
(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
已知:如图,是半圆
的直径,弦
,动点
、
分别在线段
、
上,且
,
的延长线与射线
相交于点
、与弦
相交于点
(点
与点
、
不重合),
,
.设
,
的面积为
.
(1)求证:;
(2)求关于
的函数关系式,并写出它的定义域;
(3)当是直角三角形时,求线段
的长.
(本题满分12分,每小题满分各4分)
已知在平面直角坐标系中(如图),抛物线
与
轴的负半轴相交于点
,与
轴相交于点
,
.点
在抛物线上,线段
与
轴的正半轴交于点
,线段
与
轴相交于点
.设点
的横坐标为
.
(1)求这条抛物线的解析式;
(2)用含的代数式表示线段
的长;
(3)当时,求
的正弦值.