为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.
推理填空:如图若∠1=∠2,
则∥;()
若∠DAB+∠ABC=180,
则∥;()当∥时,
∠ C+∠ABC=180; ()
当∥时,
∠3="∠A" .()
某小区前坪有一块空地,现想建成一块面积大于50平方米,周长小于35米的矩形绿化草地,已知一边长为8米,设其邻边长为x米,求x的整数解.
计算:
解方程组:
如图:在直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与轴相交于B、C两点,与
轴相交于D、E两点.
若抛物线
经过C、D两点,求此抛物线的解析式,并判断点B是否在这条抛物线上?
过点E的直线
交
轴于F(
,0),求此直线的解析式,这条直线是⊙A的切线吗?请说明理由;
探索:是否能在(1)中的抛物线上找到一点Q,使直线BQ与
轴正方向所夹锐角的正切值等于
?,若能,请直接写出Q点坐标;若不能,请说明理由. (4分)
如图:△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB与AC、AE分别交于点O、E,连接EC.求证:AD=EC;
当∠BAC=90º时,求证:四边形ADCE是菱形;
在(2)的条件下,若AB=AO,且OD=
,求菱形ADCE的周长.