游客
题文

如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.

(1)求A,B两点的坐标;
(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

2011年5月上旬,无锡市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成如图所示的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:


m=,n=,x=,y=
在扇形图中,C等级所对应的圆心角是
如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?

如图,菱形ABCD的边长为20cm,∠ABC=120°.动点PQ同时从点A出发,其中P以4cm/s的速度,沿ABC的路线向点C运动;Q以2cm/s的速度,沿AC的路线向点C运动.当PQ到达终点C时,整个运动随之结束,设运动时间为t秒.

(1)在点PQ运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;
(2)点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N
①当t为何值时,点PMN在一直线上?
②当点PMN不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

( 本题满分12分)
(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为

(2)观察发现小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由

(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。

如图直角坐标系中,已知A(-4,0),B(0,3),点M在线段AB上

(1)如图1,如果点M是线段AB的中点,且的半径为2,试判断直线OB与的位置关系,并说明理由;
(2)如图2,与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标

如图,在⊙O中,∠ACB=∠BDC=60°,AC=

(1)求∠BAC的度数;
【小题2(2)求⊙O的周长

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号