某市在2013年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图.
频数分布表
代码 |
和谁一起生活 |
频数 |
频率 |
A |
父母 |
4200 |
0.7 |
B |
爷爷奶奶 |
660 |
a |
C |
外公外婆 |
600 |
0.1 |
D |
其它 |
b |
0.09 |
|
合计 |
6000 |
1 |
请根据上述信息,回答下列问题:
(1)a= ,b= ;
(2)在扇形统计图中,和外公外婆一起生活的学生所对应扇形圆心角的度数是 ;
(3)若该市八年级学生共有3万人,估计不与父母一起生活的学生有 人.
化简:
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的△DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转。
⑴在图1中,DE交AB于M,DF交BC于N。①说明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;
⑵继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出理由;若不成立,请说明理由;
⑶继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出结论,不用说明理由。
如图是一个食品包装盒的展开图。(图中六边形的各边长相等)
(1)请写出这个包装盒的多面体形状的名称;
(2)请根据图中所标的尺寸,计算这个多面体的侧面积(各个侧面的面积之和)
如图,△ABC的三边分别为AC=5,BC=12,AB="13," 将△ABC沿AD折叠,使AC落在AB上.与E点重合。
(1)试判断△ABC的形状,并说明理由.
(2)求折痕AD的长.
如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段;请在图中画出AB=,CD=,EF=这样的线段.