为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.
(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:
(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.
(3)在投稿篇数为9篇的两个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.
解方程: .
解不等式组: .
计算: .
综合与探究
如图,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 ,连接 , .
(1)求 、 , 三点的坐标并直接写出直线 , 的函数表达式.
(2)点 是直线 下方抛物线上的一个动点,过点 作 的平行线 ,交线段 于点 .
①试探究:在直线 上是否存在点 ,使得以点 , , , 为顶点的四边形为菱形,若存在,求出点 的坐标,若不存在,请说明理由;
②设抛物线的对称轴与直线 交于点 ,与直线 交于点 .当 时,请直接写出 的长.
综合与实践
问题情境:数学活动课上,老师出示了一个问题:如图①,在 中, ,垂足为 , 为 的中点,连接 , ,试猜想 与 的数量关系,并加以证明.
独立思考:(1)请解答老师提出的问题;
实践探究:(2)希望小组受此问题的启发,将 沿着 为 的中点)所在直线折叠,如图②,点 的对应点为 ,连接 并延长交 于点 ,请判断 与 的数量关系,并加以证明.
问题解决:(3)智慧小组突发奇想,将 沿过点 的直线折叠,如图③,点 的对应点为 ,使 于点 ,折痕交 于点 ,连接 ,交 于点 .该小组提出一个问题:若此 的面积为20,边长 , ,求图中阴影部分(四边形 的面积.请你思考此问题,直接写出结果.