在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).
(1)若M(﹣2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.
先化简,再求值: ,其中 .
在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 .
(1)求抛物线的表达式;
(2)如图,直线 与抛物线交于 , 两点,与直线 交于点 .若 是线段 上的动点,过点 作 轴的垂线,交抛物线于点 ,交直线 于点 ,交直线 于点 .
①当点 在直线 上方的抛物线上,且 时,求 的值;
②在平面内是否在点 ,使四边形 为正方形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
)已知 和 都是等腰直角三角形 , .
(1)如图1:连 , ,求证: ;
(2)若将 绕点 顺时针旋转,
①如图2,当点 恰好在 边上时,求证: ;
②当点 , , 在同一条直线上时,若 , ,请直接写出线段 的长.
某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量 (千克)与每千克售价 (元 满足一次函数关系,其部分对应数据如下表所示:
每千克售价 (元 |
|
25 |
30 |
35 |
|
日销售量 (千克) |
|
110 |
100 |
90 |
|
(1)求 与 之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
如图, 的对角线 , 交于点 ,以 为直径的 经过点 ,与 交于点 , 是 延长线上一点,连接 ,交 于点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的直径.