游客
题文

在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).

(1)若M(﹣2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

先化简,再求值: a 2 + 2 a + 1 a 2 - 1 · 1 a + 1 ,其中 a = 3 + 1

在平面直角坐标系中,抛物线 y = - 1 3 x 2 + bx + c x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C

(1)求抛物线的表达式;

(2)如图,直线 y = 3 4 x + 9 4 与抛物线交于 A D 两点,与直线 BC 交于点 E .若 M ( m , 0 ) 是线段 AB 上的动点,过点 M x 轴的垂线,交抛物线于点 F ,交直线 AD 于点 G ,交直线 BC 于点 H

①当点 F 在直线 AD 上方的抛物线上,且 S ΔEFG = 5 9 S ΔOEG 时,求 m 的值;

②在平面内是否在点 P ,使四边形 EFHP 为正方形?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

)已知 ΔAOB ΔMON 都是等腰直角三角形 ( 2 2 OA < OM = ON ) AOB = MON = 90 °

(1)如图1:连 AM BN ,求证: ΔAOM ΔBON

(2)若将 ΔMON 绕点 O 顺时针旋转,

①如图2,当点 N 恰好在 AB 边上时,求证: B N 2 + A N 2 = 2 O N 2

②当点 A M N 在同一条直线上时,若 OB = 4 ON = 3 ,请直接写出线段 BN 的长.

某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量 y (千克)与每千克售价 x (元 ) 满足一次函数关系,其部分对应数据如下表所示:

每千克售价 x (元 )

25

30

35

日销售量 y (千克)

110

100

90

(1)求 y x 之间的函数关系式;

(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?

(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?

如图, ABCD 的对角线 AC BD 交于点 E ,以 AB 为直径的 O 经过点 E ,与 AD 交于点 F G AD 延长线上一点,连接 BG ,交 AC 于点 H ,且 DBG = 1 2 BAD

(1)求证: BG O 的切线;

(2)若 CH = 3 tan DBG = 1 2 ,求 O 的直径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号