如图,△ABC三个顶点的坐标分别为A(-3,-1)、B(-4,-3)C(-2,-5):
(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;并写出A1、B1、C1点的坐标。
(2)在图中作出△ABC关于原点对称的图形△A2B2C2;并写出A2、B2、C2点的坐标.
已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:
△ABC |
A(![]() |
B(3,0) |
C(5,5) |
△A′B′C′ |
A′(4,2) |
B′(7,b) |
C′(c,7) |
(1)观察表中各对应点坐标的变化,并填空:__________,
__________,
__________;
(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′
(3)直接写出△A′B′C′的面积是__________。
已知:关于x,y的方程组的解为负数,求m的取值范围.
(1)解不等式3(x+1)<4(x-2)-3,并把它的解集表示在数轴上;
(2).求不等式组的整数解.
如图,抛物线与
轴的交点为A、B,与
轴的交点为C,顶点为
,将抛物线
绕点B旋转
,得到新的抛物线
,它的顶点为D.
(1)求抛物线的解析式;
(2)设抛物线与
轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为
,△PEF的面积为S,求S与
的函数关系式,写出自变量
的取值范围;
(3)设抛物线的对称轴与
轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)求证:
(3)若tanC=,DE=2,求AD的长.