游客
题文

如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将△BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将△BAE沿BE折叠,恰好使点A落在BD边的F点上.

(1)求BC的长,并求折痕BD所在直线的函数解析式;
(2)过点F作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;
(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PN⊥BC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,已知的三个顶点的坐标分别为
请直接写出点关于原点对称的点的坐标;
绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;
请直接写出:以为顶点的平行四边形的第四个顶点的坐标.

黄冈市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。
求平均每次下调的百分率。
某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

已知抛物线与x轴的一个交点为A(-1,0),与y轴正半轴交于点C.

直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;
当∠ACB=90°时,求抛物线的解析式;
抛物线上是否存在点M,使得△ABM和△ABC的面积相等(△ABM与△ABC重合除外)?若存在,请直接写出点M坐标;若不存在,请说明理由.
在第一象限内,抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出这个最大值和点N坐标;若不存在,请说明理由.

如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P,

当OA=时,求点O到BC的距离
如图2,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少?

若BC边与⊙O有公共点,直接写出 OA
的取值范围;
若CO平分∠ACB,则线段AP的长是多少?

如图1,正方形ABCD的边长为1,点E是AD边的中点,将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G,则FG=DG,求出此时DG的值;

如图2,矩形ABCD中,AD>AB,AB=1,点E是AD边的中点,同样将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G.

①证明:FG=DG;
②若点G恰是CD边的中点,求AD的值;
③若△ABE与△BCG相似,求AD的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号