小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强 从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚 从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程 (千米)与校车行驶时间 (分钟)之间的函数图象如图所示.
(1)求点 的纵坐标 的值;
(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.
如图所示,飞机在一定高度上沿水平直线飞行,先在点 处测得正前方小岛 的俯角为 ,面向小岛方向继续飞行 到达 处,发现小岛在其正后方,此时测得小岛的俯角为 ,如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
先化简,再求值: ,其中 .
计算: .
如图,二次函数 的图象与 轴交于 、 两点,与 轴交于点 , .点 在函数图象上, 轴,且 ,直线 是抛物线的对称轴, 是抛物线的顶点.
(1)求 、 的值;
(2)如图①,连接 ,线段 上的点 关于直线 的对称点 恰好在线段 上,求点 的坐标;
(3)如图②,动点 在线段 上,过点 作 轴的垂线分别与 交于点 ,与抛物线交于点 .试问:抛物线上是否存在点 ,使得 与 的面积相等,且线段 的长度最小?如果存在,求出点 的坐标;如果不存在,说明理由.