如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。
(1)求证:CD是⊙M的切线;
(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;
(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。
已知二次函数y=-2x2+4x+6
(1)求函数图象的顶点坐标及对称轴
(2)求此抛物线与x轴的交点坐标.
已知,如图,△ABC中.AD⊥BC于D,AC=10,BC=21,△ABC面积为84,求sinBcosC+cosBsinC的值.
如图,△ABC中,AE交BC于点D,∠C =∠E,AD:DE = 3:5,AE=8,BD=4,则DC的长等于()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(本题8分)某人去水果批发市场采购苹果,他看中了A、B两家苹果。这两家苹果品质一样,零售价都为6元/千克,批发价各不相同。
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠。
B家的规定如下表:
数量范围(千克) |
0~500 |
500以上~1500 |
1500以上~2500 |
2500以上 |
价格(元) |
零售价的95% |
零售价的85% |
零售价的75% |
零售价的70% |
【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】
(1)如果他批发600千克苹果,则他在A 家批发需要 元,在B家批发需要 元;
(2) 如果他批发x千克苹果(1500<x<2000),则他在A 家批发需要 元,在B家批发需要 元(用含x的代数式表示);
(3) 现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由。
(本题6分)为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费. 9月份小明家里用水a吨(a>15吨).
(1)请用代数式表示李老师9月份应交的水费;
(2)当a=20时,求李老师9月份应交水费多少元?