如图甲所示,一个n=10匝,面积为S=0.3m2的圆形金属线圈,其总电阻为R1="2Ω," 与R2=4Ω的电阻连接成闭合电路。线圈内存在方向垂直于纸面向里,磁感应强度按B1="2t" + 3 (T)规律变化的磁场。电阻R2两端通过金属导线分别与电容器C的两极相连.电容器C紧靠着带小孔a(只能容一个粒子通过)的固定绝缘弹性圆筒。圆筒内壁光滑,筒内有垂直水平面竖直向下的匀强磁场B2,O是圆筒的圆心,圆筒的内半径为r=0.4m.
(1)金属线圈的感应电动势E和电容器C两板间的电压U;
(2)在电容器C内紧靠极板且正对a孔的D处有一个带正电的粒子从静止开始经电容器C加速后从a孔垂直磁场B2并正对着圆心O进入筒中,该带电粒子与圆筒壁碰撞四次后恰好又从小孔a射出圆筒.已知粒子的比荷q/m=5×107(C/kg),该带电粒子每次与筒壁发生碰撞时电量和能量都不损失,不计粒子重力和空气阻力,则磁感应强度B2多大(结果允许含有三角函数式)。
如图,光滑固定斜面倾角为α,斜面底端固定有垂直斜面的挡板C,斜面顶端固定有光滑定滑轮.质量为m的物体A经一轻质弹簧与下方挡板上的质量也为m的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳平行于斜面.现在挂钩上挂一质量为M的物体D并从静止状态释放,已知它恰好能使B离开挡板但不继续上升.若让D带上正电荷q,同时在D运动的空间中加上方向竖直向下的匀强电场,电场强度的大小为E,仍从上述初始位置由静止状态释放D,
求:这次B刚离开挡板时D的速度大小是多少?(已知重力加速度为g.)
在方向水平的匀强电场中,一不可伸长的不导电细线的一端连着一个质量为m的带电小球,另一端固定于O点。把小球拉起直至细线与场强平行,然后无初速释放。已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ(如图)。求小球经过最低点时细线对小球的拉力。
用一根长为L的丝线吊着一质量为m、带电荷量为q的小球,小球静止在水平向右的匀强电场中,如图丝线与竖直方向成530角,现突然将该电场方向变为向下但大小不变,不考虑因电场的改变而带来的其他影响(重力加速度为g),求:
(1)匀强电场的电场强度的大小;
(2)小球经过最低点时丝线的拉力.
如图所示,两块竖直放置的导体板间存在水平向左的匀强电场,板间距离为。有一带电量为
、质量为
的小球(可视为质点)以水平速度从A孔进入匀强电场,且恰好没有与右板相碰,小球最后从B孔离开匀强电场,若A、B两孔的距离为
,重力加速度为
,求:
(1)两板间的电场强度大小;
(2)小球从A孔进入电场时的速度;
(3)从小球进入电场到其速度达到最小值,小球电势能的变化量为多少?
如图所示,倾角为37º的传送带以4m/s的速度沿图示方向匀速运动。已知传送带的上、下两端间的距离为L=7m。现将一质量m=0.4kg的小木块轻放到传送带的顶端,使它从静止开始沿传送带下滑,已知木块与传送带间的动摩擦因数为μ=0.25,设最大静摩擦力等于滑动摩擦力,取g=10m/s2。求:
(1)木块从顶端滑到底端所需要的时间;
(2)木块从顶端滑到底端摩擦力对木块做的功;
(3)木块从顶端滑到底端产生的热量?