如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.
已知抛物线m的顶点为(1,0),且经过点(0,1).
(1)求该抛物线对应的函数的解析式;
(2)将该抛物线向下平移m个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C(点B在点C的左侧),若△ABC为等边三角形.
①求m的值;
②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使得以点P、C、B、D为顶点构成的四边形是菱形?若存在,请写出点P的坐标;若不存在,请说明理由.
如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.
(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;
(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.
探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);
(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.
如图,两条公路AB,CD(均视为直线).东西向公路CD段限速,规定最高行驶速度不能越过60千米/时,并在南北向公路离该公路100米的A处没置了一个监测点.已知点C在A的北偏西60°方向上,点D在A的北偏东45°方向上.
(1)经监测,一辆汽车从点C匀速行驶到点D所的时间是15秒,请通过计算,判断该汽车在这段限速路上是否超速?(参考数据:=1.732)
(2)若一辆大货车在限速路上由D处向西行驶,一辆小汽车在南北向公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,两车在匀速行驶过程中的最近距离是多少?
如图,⊙O是△ABC的外接圆,AB=AC,连结CO并延长交⊙O的切线AP于点P.
(1)求证:∠APC=∠BCP;
(2)若sin∠APC=,BC=4,求AP的长.
某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:
(1)求y与x之间的函数关系式;
(2)若该商品的销售单价在45元~80元之间浮动,
①销售单价定为多少元时,销售利润最大?此时销售量为多少?
②商场想要在这段时间内获得4550元的销售利润,销售单价应定为多少元?