游客
题文

如图,在平面直角坐标系中,顶点为(3,4)的抛物线交 y轴与A点,交x轴与B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.

如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上, CE∥BF,连接BE、CF.

(1)求证:△BDF≌△CDE;
(2)当△ABC满足什么条件时,四边形BFCE是菱形?

进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:

通过这段对话,请你求出该地驻军原来每天加固的米数.

如图,已知抛物线与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).

(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

已知:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1延长CD交AE于k.

(1)求证:AE=CD,AE⊥CD;
(2)类比:如图2所示,将(1)中的Rt△DBE绕点B逆时针旋转一个锐角,问(1)中线段AE,CD之间数量关系和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)拓展:在图2中,将“AB=BC,DB=EB”改为“AB=kBC,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系怎样?请直接写出线段AE,CD间的数量关系和位置关系.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号