游客
题文

小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?

(1)①请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);

②说出该画法依据的定理.
(2)小明在此基础上进行了更深入的探究,想到两个操作:

①在图3的画板内,在直线a与直线b上各取一点,使这两点与直线a、b的交点构成等腰三角形(其中交点为顶角的顶点),画出该等腰三角形在画板内的部分.
②在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线(在画板内的部分),只要求作出图形,并保留作图痕迹.
请你帮小明完成上面两个操作过程.(必须要有方案图,所有的线不能画到画板外,只能画在画板内)

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(结果精确到1米。参考数据:sin32°=0.5299,cos32°=0.8480)

为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3:5:2,随机抽取一定数量的观众进行调查,得到如下统计图.

(1)上面所用的调查方法是(填“全面调查”或“抽样调查”);
(2)写出折线统计图中A、B所代表的值; A:;B:
(3)求该地区喜爱娱乐类节目的成年人的人数.

已知△ABC在平面直角坐标系中的位置如图所示.

(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π)

如图,二次函数y=-x2+bx+c的图像经过点A(4,0)B(-4,-4),且与y轴交于点C.

(1)求此二次函数的解析式;
(2)证明:∠BAO=∠CAO(其中O是原点);
(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图像及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由.

已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF

(1)如图1,当点D在线段BC上时.求证CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号