某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.
(1)问:年降水量为多少万m3?每人年平均用水量多少m3?
(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?
(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?
中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:
(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).
(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).
(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母 , , , 表示.现把分别印有 , , , 的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“ ”和“ ”的概率.
已知:如图,点 , 在线段 上, , , .求证: .
综合与探究
如图,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 ,连接 , .点 是第四象限内抛物线上的一个动点,点 的横坐标为 ,过点 作 轴,垂足为点 , 交 于点 ,过点 作 交 轴于点 ,交 于点 .
(1)求 , , 三点的坐标;
(2)试探究在点 运动的过程中,是否存在这样的点 ,使得以 , , 为顶点的三角形是等腰三角形.若存在,请直接写出此时点 的坐标;若不存在,请说明理由;
(3)请用含 的代数式表示线段 的长,并求出 为何值时 有最大值.
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形 中, , 是 延长线上一点,且 ,连接 ,交 于点 ,以 为一边在 的左下方作正方形 ,连接 .试判断线段 与 的位置关系.
探究展示:勤奋小组发现, 垂直平分 ,并展示了如下的证明方法:
证明: , .
, .
四边形 是矩形, .
.(依据
, . .
即 是 的 边上的中线,
又 , .(依据
垂直平分 .
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点 是否在线段 的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接 ,以 为一边在 的左下方作正方形 ,发现点 在线段 的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接 ,以 为一边在 的右上方作正方形 ,可以发现点 ,点 都在线段 的垂直平分线上,除此之外,请观察矩形 和正方形 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.
请阅读下列材料,并完成相应的任务:
在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形 的 和 两边上分别取一点 和 ,使得 .(如图)解决这个问题的操作步骤如下: 第一步,在 上作出一点 ,使得 ,连接 .第二步,在 上取一点 ,作 ,交 于点 ,并在 上取一点 ,使 .第三步,过点 作 ,交 于点 .第四步,过点 作 ,交 于点 ,再过点 作 ,交 于点 . 则有 . 下面是该结论的部分证明: 证明: , , 又 . △ . . 同理可得 . . , . |
任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形 的形状,并加以证明;
(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成 的证明过程;
(3)上述解决问题的过程中,通过作平行线把四边形 放大得到四边形 ,从而确定了点 , 的位置,这里运用了下面一种图形的变化是 .
.平移 .旋转 .轴对称 .位似