已知在直角坐标系中,曲线
的参数方程为
(
为非零常数,
为参数),在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的方程为
.
(Ⅰ)求曲线的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数,使得直线
与曲线
有两个不同的公共点
,且
(其中
为坐标原点)?若存在,请求出;否则,请说明理由.
在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考室中座位号为05的考生,统计了他们的成绩,得到如图所示的频率分布直方图.
(Ⅰ)在这个调查采样中,用到的是什么抽样方法?
(Ⅱ)写出这40个考生成绩的众数、中位数(只写结果);
(Ⅲ)若从成绩在的考生中任抽取2人,求成绩在
的考生至少有一人的概率.
已知等差数列的前
项和为
,且
.
(I)求数列的通项公式;
(II)设等比数列,若
,求数列
的前
项和
.
在平面直角坐标系中,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,直线
的参数方程为
为参数,
).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点
,求直线
被曲线
截得的线段
的长.
已知矩阵,绕原点逆时针旋转
的变换所对应的矩阵为
.
(Ⅰ)求矩阵;
(Ⅱ)若曲线:
在矩阵
对应变换作用下得到曲线
,求曲线
的方程.
已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)当时,在曲线
上是否存在两点
,使得曲线在
两点处的切线均与直线
交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;
(Ⅲ)若在区间
存在最大值
,试构造一个函数
,使得
同时满足以下三个条件:①定义域
,且
;②当
时,
;③在
中使
取得最大值
时的
值,从小到大组成等差数列.(只要写出函数
即可)