(本题满分10分)
已知二项展开式中,第4项的二项式系数与第3项的二项式系数的比为
.
(I)求的值;
(II)求展开式中项的系数。
【2015高考北京,理18】已知函数.
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)求证:当时,
;
(Ⅲ)设实数使得
对
恒成立,求
的最大值.
【2015高考新课标1,理21】已知函数f(x)=.
(Ⅰ)当a为何值时,x轴为曲线的切线;
(Ⅱ)用表示m,n中的最小值,设函数
,讨论h(x)零点的个数.
【2015高考湖北,理22】已知数列的各项均为正数,
,
为自然对数的底数.
(Ⅰ)求函数的单调区间,并比较
与
的大小;
(Ⅱ)计算,
,
,由此推测计算
的公式,并给出证明;
(Ⅲ)令,数列
,
的前
项和分别记为
,
, 证明:
.
【2015高考四川,理21】已知函数,其中
.
(1)设是
的导函数,评论
的单调性;
(2)证明:存在,使得
在区间
内恒成立,且
在
内有唯一解.
【2015高考重庆,理20】 设函数
(1)若在
处取得极值,确定
的值,并求此时曲线
在点
处的切线方程;
(2)若在
上为减函数,求
的取值范围。