已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
写出下列命题的“否定”,并判断其真假.
(1)p:x∈R,x2-x+
≥0;
(2)q:所有的正方形都是矩形;
(3)r:x∈R,x2+2x+2≤0;
(4)s:至少有一个实数x,使x3+1=0.
分别指出由下列命题构成的“pq”、“p
q”、“
p”形式的命题的真假.
(1)p:4∈{2,3},q:2∈{2,3};
(2)p:1是奇数,q:1是质数;
(3)p:0∈,q:{x|x2-3x-5<0}
R;
(4)p:5≤5,q:27不是质数;
(5)p:不等式x2+2x-8<0的解集是{x|-4<x<2},
q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.
已知两个命题r(x):sinx+cosx>m,s(x):x2+mx+1>0.如果对x∈R,r(x)与s(x)有且仅有一个是真命题.求实数m的取值范围.
分别指出由下列命题构成的“pq”、“p
q”、“
p”形式的命题的真假.
(1)p:3是9的约数,q:3是18的约数;
(2)p:菱形的对角线相等,q:菱形的对角线互相垂直;
(3)p:方程x2+x-1=0的两实根符号相同,
q:方程x2+x-1=0的两实根绝对值相等.
(4)p:是有理数,q:
是无理数.
a,b,c为实数,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.